
Safe Agents in Space: Lessons from
the Autonomous Sciencecraft Experiment

Rob Sherwood, Steve Chien, Daniel Tran, Benjamin Cichy,
Rebecca Castano, Ashley Davies, Gregg Rabideau

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr., Pasadena, CA 91109

{ firstname.lastname@jpl.nasa.gov}

Abstract. An Autonomous Science Agent is currently flying onboard the
Earth Observing One Spacecraft. This software enables the spacecraft to
autonomously detect and respond to science events occurring on the Earth.
The package includes software systems that perform science data analysis,
deliberative planning, and run-time robust execution. Because of the
deployment to a remote spacecraft, this Autonomous Science Agent has
stringent constraints of autonomy, reliability, and limited computing
resources. We describe these constraints and how they are reflected in our
agent architecture.

1. Introduction

The Autonomous Sciencecraft Experiment (ASE) is currently flying autonomous
agent software on the Earth Observing One (EO-I) spacecraft [Error! Reference
source not found.]. This software demonstrates several integrated autonomy
technologies to enable autonomous science. Several algorithms are used to analyze
remote sensing imagery onboard in order to detect the occurrence of science events.
These algorithms will be used to downlink science data only on change, and will
detect features of scientific interest such as volcanic eruptions, flooding, ice
breakup, and presence of cloud cover. The results of these onboard science
algorithms are inputs to onboard decision-making algorithms that then modifies the
spacecraft observation plan to capture high value science events. This new
observation plan is then be executed by a robust goal and task oriented execution
system, able to adjust the plan to succeed despite run-time anomalies and
uncertainties. Together these technologies enable autonomous goal-directed
exploration and data acquisition to maximize science return. This paper describes
the Autonomous Sciencecraft Experiment (ASE) effort to develop and deploy the
Autonomous Science Agent on the Earth Observing One spacecraft.

The ASE onboard flight s o h a r e includes several autonomy software
components:
0 Onboard science algorithms that will analyze the image data to detect trigger

conditions such as science events, “interesting” features, changes relative to
previous observations, and cloud detection for onboard image masking

1

0 Robust execution management software using the Spacecraft Command
Language (SCL) [7] package to enable event-driven processing and low-level
autonomy

0 The Continuous Activity Scheduling Planning Execution and Replanning
(CASPER) [3] software that will replan activities, including downlink, based on
science observations in the previous orbit cycles

The onboard science algorithms will analyze the images to extract static features
and detect changes relative to previous observations. Prototype software has already
been demonstrated on EO-] Hyperion data to automatically identify regions of
interest including land, ice, snow, water, and thermally hot areas. Repeat imagery
using these algorithms can detect regions of change (such as flooding and ice melt)
as well as regions of activity (such as lava flows). Using these algorithms onboard
will enable retargeting and search, e.g., retargeting the instrument on a subsequent
orbit cycle to identify and capture the full extent of a flood. On future
interplanetary space missions, onboard science analysis will enable capture of short-
lived science phenomena. These can be captured at the finest time-scales without
overwhelming onboard memory or downlink capacities by varying the data
collection rate on the fly. Examples include: eruption of volcanoes on Io, formation
of jets on comets, and phase transitions in ring systems. Generation of derived
science products (e.g., boundary descriptions, catalogs) and change-based triggering
will also reduce data volumes to a manageable level for extended duration missions
that study long-term phenomena such as atmospheric changes at Jupiter and flexing
and cracking of the ice crust and resurfacing on Europa.

The planning software (CASPER) will generate mission operations plans from
goals provided by the onboard science analysis module. The model-based planning
algorithms will enable rapid response to a wide range of operations scenarios based
on a deep model of spacecraft constraints, including faster recovery from spacecraft
anomalies. The onboard planner will accept as inputs the science and engineering
goals and ensure high-level goal-oriented behavior.

The robust execution system (SCL) accepts the CASPER-derived plan as an
input and expands the plan into low-level commands. SCL monitors the execution
of the plan and has the flexibility and knowledge to perform event-driven
commanding to enable local improvements in execution as well as local responses
to anomalies.

A typical ASE scenario involves monitoring of active volcano regions such as
Mt. Etna in Italy. (See Figure 1.) Hyperion data have been used in ground-based
analysis to study this phenomenon. The ASE concept will be applied as follows:

1. Initially, ASE has a list of science targets to monitor that have been sent as high-
level goals from the ground.

2. As part of normal operations, CASPER generates a plan to monitor the targets on
this list by periodically imaging them with the Hyperion instrument. For
volcanic studies, the infra-red and near infi-a-red bands are used.

3. During execution of this plan, the EO-] spacecraft images Mt. Etna with the
Hyperion instrument.

4. The onboard science algorithms analyze the image and detect a fi-esh lava flow,
or active vent. If new activity is detected, a science goal is generated to continue

2

monitoring the volcanic site.
downlinked.

the ongoing volcanic activity.

If no activity is observed, the image is not

5 . Assuming a new goal is generated, CASPER plans to acquire a further image of

6. The SCL sofhvare executes the CASPER generated plan to miimage the site.
7. This cycle is then repeated on subsequent observations.

Initial Image
taken by

Spacecraft

Image

Target

t
I I Retarget for New

Observation Goals

Processing 4%
Feat urelCloud

Detectlon

Re planning

4

Fig. 1. Autonomous Science Scenario

Building autonomy software for space missions has a number of key challenges;
many of these issues increase the importance of building a reliable, safe, agent.
1. Limited, intermittent communications to the agent. A typical spacecraft in low

earth orbit (such as EO-1) has eight 1 0-minute communications opportunities per
day. This means that the spacecraft must be able to operate for long periods of
time without supervision. For deep space missions the spacecraft may be in
communications far less frequently. Some deep space missions only contact the
spacecraft once per week, or even once every several weeks.

3

2. Spacecraft are very complex. A typical spacecraft has thousands of components,
each of which must be carefully engineered to survive rigors of space (extreme
temperature, radiation, physical stresses). Add to this the fact that many
components are one-of-a-kind and thus have behaviors that are hard to
characterize.

3. Limited observability. Because processing telemetry is expensive, onboard
storage is limited, and downlink bandwidth is limited, engineering telemetry is
limited. Thus onboard software must be able to make decisions based on limited
information and ground operations teams must be able to operate the spacecraft
with even more limited information.

Because of limited power onboard, spacecraft
computing resources are usually very constrained. On average, spacecraft CPUs
offer 25 MIPS and 128 MB RAM - far less than a typical personal computer.
Our CPU allocation for ASE on EO-1 is 4 MLPS and 128MB RAM.

5 . High stakes. A typical space mission costs hundreds of millions of dollars, any
failure has significant economic impact. The total EO-1 Mission cost is over
$100 million. Planetary missions can have severe launch constraints due to
planetary geometries. In these cases, if a space mission is lost it may be years
before another similar mission can be launched. Additionally, space missions
can take years to plan, build, launch, and reach their targets. This delay can be
catastrophic.

4. Limited computing power.

Of the above aspects of spacecraft autonomy, two critical issues are:
1. Extreme reliability - because of the extreme cost of space missions, and inability

to access the spacecraft except by communications, the software agent must be
exceptionally reliable.

2. CPU and RAM performance - spacecraft have extremely limited CPU and RAM
(in our case 4 MIPS and 128MB RAM) yet must adhere to at least soft, real-time
constraints.
In the remainder of this paper we describe the ASE software architecture and

We then discuss how the issues of reliability and performance components.
affected the software architecture.

2. The EO-1 Mission

EO-1 IS the first satellite in NASA's New Millennium Program Earth Observing
series. The primary focus of EO-1 is to develop and test a set of advanced
technology land imaging instruments.

EO-1 was launched on a Delta 7320 from Vandenberg Air Force Base on
November 21,2000. It was inserted into a 705 km circular, sun-synchronous orbit
at a 98.7 degrees inclination. This orbit allows for 16-day repeat tracks, with 3 over
flights per 16-day cycle with a less than 10-degree change in viewing angle. For
each scene, over 20-Gbits of data fiom the Advanced Land Imager (ALI), Hyperion,
and Atmospheric Corrector (AC) are collected and stored on the onboard solid-state
data recorder at high rates.

The ASE described in this paper uses the Hyperion hyper-spectral instrument.
The Hyperion is a high-resolution imager capable of resolving 220 spectral bands

(from 0.4 to 2.5 pm) with a 30-meter spatial resolution. The instrument images a 7.5
km by 42 km land area per image and provides detailed spectral mapping across all
220 channels with high radiometric accuracy.

The EO-1 spacecraft has two Mongoose M5 processors. The first M5 is used for
the EO-1 command and data handling functions. The other M5 is part of the WARP
(Wideband Advanced Recorder Processor), a large mass storage device. Each M5
runs at 12 M H z (for -8 MIPS) and has 256 MB RAM. Both M5’s run the VxWorks
operating system. The ASE software operates on the WARP M5. This provides an
added level of safety for the spacecraft since the ASE software does not run on the
main spacecraft processor.

Fig. 2. Autonomy Software Architecture

3. Autonomy Software Architecture

The autonomy software on EO-1 is organized into a traditional three-layer
architecture [5] (See Figure 2.). At the highest level of abstraction, the Continuous
Activity Scheduling Planning Execution and Replanning (CASPER) software is
responsible for mission planning functions. CASPER schedules science activities
while respecting spacecraft operations and resource constraints. The duration of the
planning process is on the order of tens of minutes. CASPER scheduled activities
are inputs to the Spacecraft Command Language (SCL) system, which generates the
detailed sequence commands corresponding to CASPER scheduled activities. SCL
operates on the several second timescale. Below SCL, the EO-1 flight software is
responsible for lower level control of the spacecraft and also operates a full layer of
independent fault protection. The interface from SCL to the EO-1 flight software is
at the same level as ground generated command sequences. The science analysis
software is scheduled by CASPER and executed by SCL in a batch mode. The

5

results from the science analysis software result in new observation requests
presented to the CASPER system for integration in the mission plan.

This layered architecture was chosen for two principal reasons:

1. The layered architecture enables separation of responses based on timescale and
most appropriate representation. The flight software level must implement
control loops and fault protection and respond very rapidly and is thus directly
coded in C. SCL must respond quickly (in seconds) and perform many
procedural actions. Hence SCL uses as its core representation scripts, rules, and
database records. CASPER must reason about longer term operations, state, and
resource constraints. Because of its time latency, it can afford to use a mostly
declarative artificial intelligence plannedscheduler representation.

2. The layered architecture enables redundant implementation of critical functions -
most notable spacecraft safety constraint checking. In the design of our
spacecraft agent model, we implemented spacecraft safety constraints in all
levels where feasible.

Each of the software modules operates at a separate VxWorks priority. The tasks
are shown below in Table 1 in decreasing priority. The ASE to FSW bridge is the
task responsible for reading the real-time flight software telemetry stream,
extracting pertinent data, and making it accessible to the remainder of the ASE
software. The Band Stripping task reads the science data from the onboard WARP
solid state recorder and extracts a small portion of the science data (12 bands of
Hyperion data) to RAM. The science analysis software then operates on the
extracted data to detect science events.

It is worth noting that our agent architecture is designed to scale to multiple
agents. Agents communicate at either the planner level (via goals) or the execution
level (to coordinate execution).

Table 1. EO-1 Software Tasks in Decreasing Task Priority (e.g. upper tasks have highest
priority for CPU).

We now describe each of the architectural components of our architecture in
further detail.

6

-

4. Onboard Science Analysis

The first step in the autonomous science decision cycle is detection of interesting
science events. In the complete experiment, a number of science analysis
algorithms will be flown including:

Thermal anomaly detection - uses infrared spectra peaks to detect lava flows and
other volcanic activity.
Cloud detection [13] - uses intensities at six different spectra and thresholds to
identify likely clouds in scenes.
Flood scene classification - uses ratios at several spectra to identify signatures of
water inundation as well as vegetation changes caused by flooding.
Change detection - uses multiple spectra to identify regions changed from one
image to another. This technique is applicable to many science phenomena
including lava flows, flooding, freezing and thawing and is used in conjunction
with cloud detection.
Generalized Feature detection - uses trainable recognizers to detect spatial
features as sand dunes and wind streaks.

All of these science algorithms use the Hyperion instrument, as the ALI data is
not available for processing onboard. These algorithms are described in more detail
in [4].

5. Onboard Mission Planning

In order for the spacecraft to respond autonomously to a science event, it must be
able to independently perform the mission planning function. This requires
software that can model all spacecraft and mission constraints. The CASPER [3]
software performs this hnction for ASE. CASPER represents the operations
constraints in a general modeling language and reasons about these constraints to
generate new operations plans that respect spacecraft and mission constraints and
resources. CASPER uses a local search approach [12] to develop operations plans.

Because onboard computing resources are scarce, CASPER must be very
efficient in generating plans. While a typical desktop or laptop PC may have 2000-
3000 MIPS performance, 5-20 MIPS is more typical onboard a spacecraft. In the
case of EO-1, the Mongoose V CPU has approximately 8 MIPS. Of the three
software packages, CASPER is by far the most computationally intensive. For that
reason,, our optimization efforts were focused on CASPER. Carefbl engineering
and modeling were required to enable CASPER to build a plan in tens of minutes on
the relatively slow CPU.

CASPER is responsible for long-term mission planning in response to both
science goals derived onboard as well as anomalies. In this role, CASPER must
plan and schedule activities to achieve science and engineering goals while
respecting resource and other spacecraft operations constraints. For example, when
acquiring an initial image, a volcanic event is detected. This event may warrant a
high priority request for a subsequent image of the target to study the evolving
phenomena. In this case, CASPER will modify the operations plan to include the

7

necessary activities to re-image. This may include determining the next over flight
opportunity, ensuring that the spacecraft is pointed appropriately, that sufficient
power and data storage are available, that appropriate calibration images are
acquired, and that the instrument is properly prepared for the data acquisition.

In the context of ASE, CASPER reasons about the majority of spacecraft
operations constraints directly in its modeling language. However, there are a few
notable exceptions. First, the over flight constraints are calculated using ground-
based orbit analysis tools. The over flight opportunities and pointing required for
all targets of interest are uploaded as a table and utilized by CASPER to plan.
Second, the ground operations team will initially perform management of the
momentum of the reaction wheels for the EO-1 spacecraft. This is because of the
complexity of the momentum management process caused by the EO-1
configuration of three reaction wheels rather than four.

6. Onboard Robust Execution

ASE uses the Spacecraft Command Language (SCL) [7] to provide robust
execution. SCL is a software package that integrates procedural programming with
a real-time, forward-chaining, rule-based system. A publishhubscribe software bus
allows the distribution of notification and request messages to integrate SCL with
other onboard software. This design enables both loose or tight coupling between
SCL and other flight software as appropriate.

The SCL “smart” executive supports the command and control function. Users
can define scripts in an English-like manner. Compiled on the ground, those scripts
can be dynamically loaded onboard and executed at an absolute or relative time.
Ground-based absolute time script scheduling is equivalent to the traditional
procedural approach to spacecraft operations based on time. In the ’EO-1
experiment, SCL scripts will also be planned and scheduled by the CASPER
onboard planner. The science analysis algorithms and SCL work in a cooperative
manner to generate new goals for CASPER. These goals are sent as messages on
the software bus.

For example, SCL
implements many Constraint checks that are redundant with those in the EO-1 fault
protection software. Before SCL sends each command to the EO-1 command
processor, it undergoes a series of constraint checks to ensure that it is a valid
command. Any pre-requisite states required by the command are checked (such as
the communications system being in the correct mode to accept a command). SCL
will also veri@ that there is sufficient power so that the command does not trigger a
low bus voltage condition and that there is sufficient energy in the battery. Using
SCL to check these constraints (while included in the CASPER model) provides an
additional level of safety to the autonomy flight software.

Many aspects of autonomy are implemented in SCL.

7. Agent Safety requirements

Because of significant concerns for spacecraft health, ASE implements a layered
redundant approach to enforcing spacecraft safety. This means that whenever

8

possible at every level of the agent architecture, redundant checks are implemented
to enhance spacecraft safety. This level of redundancy is enhanced by the fact that
each of the software levels in the ASE architecture is implemented by a separate set
of VxWorks tasks.

Each level of soilware in the ASE architecture is designed to operate safely in the
presence of a malfunction from the higher level of ASE software. For example, if
the ASE science software goes haywire and requests 30 observations in a single
orbit, the CASPER planner is designed to reject the unschedulable goals and only
schedule a single observation for that orbit. If the CASPER planner should
schedule overlapping observations SCL is designed to reject the contradictory
commands. Or if CASPER should plan to acquire data, but omit key setup steps,
SCL is designed to abort the observation. Likewise, if SCL sends an improper
instrument setup sequence, the EO-1 flight software is designed to reject commands
that would endanger the spacecraft.

The EO-1 spacecraft engineers, EO-1 operations personnel, as well as ASE team
members have reviewed these safeguards (for a more detailed description of the
model development, validation, and testing process, see [13]). In addition,
automated code generation techniques were used to develop SCL state & resource
constraint checks directly from the CASPER model.

Table 2 shows the redundant safeguards implemented in the ASE software, EO-1
flight software, and ASE and EO-1 operations procedures as relating to two
spacecraft safety constraints. As shown, the operations team, the CASPER planner
(via its model), SCL (via scripts and rules), and the EO-1 flight software each
implement constraints to protect the spacecraft from damage due to faulty
commands or anomalies. In this manner, even if one of the layers malfunctions, the
spacecraft may still be protected.

Table 2. Redundant Safety Contraints implemented for two safety concerns

Implement
level

Operations
Team

-~

CASPIZR

SCL

EO- 1
--

Flight
Software --

Instruments overheat from being
left on too long
For each turn on command, look
for the following turn off
command. Verify that they are
within the maximum separation.
High-level activity decomposes
into turn on and turn off activities
that are with the maximum
separation.
Rules monitor the “on” time and
issue a turn off command if left on
too long.
Fault protection software will shut
down the instrument if left on too
long.

Instruments exposed to sun

Verify orientation of spacecraft
during periods when instrument
covers are open.

Maneuvers must be planned at
times when the covers are
closed (otherwise, instruments
are pointing at the earth)
Constraints prevent maneuver
scripts from executing if covers
are open.
Fault protection will safe the
spacecraft if covers are open
and pointing near the sun.

One major exception to the design guideline of maximum separation and
redundancy of software elements is that the WARP software and ASE software
shares the same memory space. Because of this situation, a pointer error or over-

9

run of a buffer in the ASE s o h a r e could cause a software exception in the WARP
flight software (or vice versa). Likewise a memory error in one ASE component
could cause a software exception in another ASE component. All software
exceptions on the WARP M5 processor are handled by a software reset of the
WARP M5. Thus any such anomaly in any of the software is likely to cause such a
reset. Unfortunately, the version of the VxWorks being flown on EO-1 (5.3.1) does
not support process (task) based memory spaces. VxWorks 6.0 and beyond are
expected to support this feature. However, the most commonly used version of
VxWorks for Space applications is 5.4.1, so this enhancement may not become
prevalent in the near term.

8. Performance Issues in ASE

The ASE experiment is constrained by the computing environment onboard EO- 1.
Because the EO-1 software builds are each a single static image, all ASE
components that dynamically allocated RAM required flight of their own memory
manager. Originally SCL flew with a legacy memory manager previously used
with SCL on the FUSE mission. CASPER used a separate memory manager
adapted from JPL’s Deep Impact mission. However, performance from early flight
tests indicated that the SCL memory manager was significantly hampering
performance, so SCL was switched to use the same memory manager as CASPER
(but with its own heap space). Note that these memory managers had to not only
allocate and de-allocate memory quickly but also not suffer from longer term issues
such as fragmentation.

The VxWorks priorities of the ASE software were determined by design
guidelines but were then analyzed based on performance data. The very limited
CPU onboard meant that long duration scenario tests in successive ground testbeds
followed by incremental flight tests were needed to ensure scaleability.

In addition, both SCL and CASPER required that modeling and operations be
influenced by limited onboard computing and response needs. For example,
initially within SCL a much larger set of safety constraints was modeled and
execution was designed to be much more closed loop. However, testbed runs and
early flight tests indicated that telemetry delays and CPU bottlenecks meant that this
design was delaying time-sensitive commands. Most importantly, instrument on-
times were delayed (e.g. late) and too long (resulting in extra data acquired). The
ASE team was forced to both streamline the code (including the memory manager
modification) and streamline the model to speed execution.

The CASPER planner is also a significant user of onboard CPU. When CASPER
is planning future observations it utilizes all of the available CPU and takes
approximately 8 minutes to plan each observation. The CASPER model was
designed to operate within a minimal CPU profile - and as a result observations are
planned with less flexibility. By utilizing more decompositions instead of subgoals
and by fixing temporal offsets rather than retaining flexibility, search is reduced and
response time improved at the cost of plan quality (in some cases).

9. Flight Status

The ASE software has steadily progressed to full operations with the major
milestones listed below. We have begun full operations with flight of the integrated
science with autonomous planning and execution and are steadily increasing the
tempo of operations. This software will continue to be flown until at least
December 2004 and will be used to acquire as many science-triggered scenes as
resources allow.

I Test Description I Test Date

May 2003
July 2003
August 2003

Onboard commanding path test
CASPER ground generated commands executed onboard
Software jumping and loading test

10. Related work and Summary

In 1999, the Remote Agent experiment (RAX) [lo] executed for a few days
onboard the NASA Deep Space One mission. RAX is an example of a classic
three-tiered architecture [6] , as is ASE. RAX demonstrated a batch onboard
planning capability (as opposed to CASPER’s continuous planning) and RAX did
not demonstrate onboard science. PROBA [111 is a European Space Agency (ESA)
mission demonstrates onboard autonomy and launched in 200 1. However, ASE has
more of a focus on model-based autonomy than PROBA.

The Three Comer Sat (3CS) University Nanosat mission will be using the
CASPER onboard planning software integrated with the SCL ground and flight
execution software [l]. The 3CS mission is scheduled for launch on a Delta IV
rocket July 3, 2004. The 3CS autonomy software includes onboard science data
validation, replanning, robust execution, and multiple model-based anomaly
detection. The 3CS mission is considerably less complex than EO-1 but still
represents an important step in the integration and flight of onboard autonomy
software.

More recent work from NASA Ames Research Center is focused on building the
IDEA planning and execution architecture [9]. In IDEA, the planner and execution
software are combined into a “reactive planner” and operate using the same domain
model. A single planning and execution model can simplify validation, which is a
difficult problem for autonomous systems. For EO-1, the CASPER planner and
SCL executive use separate models. While this has the advantage of the flexibility
of both procedural and declarative representations, a single model would be easier
to validate. We have designed the CASPER modeling language to be used by

11

-

domain experts, thus not requiring planning experts. Our use of SCL is similar to
the “plan runner” in IDEA but SCL encodes more intelligence. The EO-1 science
analysis software is defined as one of the “controlling systems” in IDEA. In the
IDEA architecture, a communications wrapper is used to send messages between
the agents, similar to the software bus in EO- 1. In the description of IDEA there is
no information about the deployment of IDEA to any domains, so a comparison of
the performance or capabilities is not possible at this time. In many ways IDEA
represents a more AI-centric architecture with declarative modeling at its core and
ASE represents more of an evolutionary engineered solution.

ASE on EO-1 demonstrates an integrated autonomous mission using onboard
science analysis, replanning, and robust execution. The ASE performs intelligent
science data selection that will lead to a reduction in data downlink. In addition, the
ASE will increase science return through autonomous retargeting. Demonstration
of these capabilities onboard EO-1 will enable radically different missions with
significant onboard decision-making leading to novel science opportunities. The
paradigm shifi toward highly autonomous spacecraft will enable future NASA
missions to achieve significantly greater science returns with reduced risk and
reduced operations cost.

References

1. S. Chien, B. Engelhardt, R. Knight, G. Rabideau, R. Sherwood, E. Hansen, A.
Ortiviz, C. Wilklow, S. Wichman , “Onboard Autonomy on the Three Comer Sat
Mission,“ Proc i-SAIRAS 200 1, Montreal, Canada, June 2001.

2. S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau, “Using Iterative
Repair to Improve Responsiveness of Planning and Scheduling,” Proceedings of
the Fifth International Conference on Artificial Intelligence Planning and
Scheduling, Breckenridge, CO, April 2000. (also casper.jpl.nasa.gov)

3. A.G. Davies, R. Greeley, K. Williams, V. Baker, J. Dohm, M. Burl, E.
Mjolsness, R. Castano, T. Stough, J. Roden, S. Chien, R Sherwood, “ASC
Science Report,“ August 2001. (downloadable from ase.jpl.nasa.gov)

4. Davies, A. G., E.D. Mjolsness, A.G. Gray, T.F. Mann, R. Castano, T.A. Estlin
and R.S. Saunders (1999) Hypothesis-dnven active data analysis of geological
phenomena using semi-autonomous rovers: exploring simulations of Martian
hydrothermal deposits. EOS, Trans. Amer. Geophys. Union, 80, no. 17, S210.

5. E. Gat et al., Three-Layer Architectures. in D. Kortenkamp et al. eds. AI and
Mobile Robots. AAAI Press, 1998.

6. Goddard Space Flight Center, EO-1 Mission page: http://EO- 1 .gsfc.nasa.gov
7. Interface and Control Systems, SCL Home Page, sclrules.com
8. M. C:. Malin and K. S. Edgett, “Evidence for recent groundwater seepage and

surface runoff on Mars,” Science, 288,2330-2335,2000.
9. N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C. Plaunt, “IDEA: Planning

at the Core of Autonomous Reactive Agents,” Proceedings of the Workshops at
the AIPS-2002 Conference, Tolouse, France, April 2002.

10.NASA Ames, Remote Agent Experiment Home Page,
http://ic.arc.nasa.gov/projects/remote-agent. See also Remote Agent: To Boldly
Go Where No AI System Has Gone Before.

12

Nicola Muscettola, P. Pandurang Nay&, Barney Pell, and Brian Williams.
Artificial Intelligence 103(1-2):5-48, August 1998

1 1 .The PROBA Onboard Autonomy Platform, http://www.estec.esa.nl/proba/
12.G. Rabideau, R. Knight, S . Chien, A. Fukunaga, A. Govindjee, “Iterative Repair

Planning for Spacecraft Operations in the ASPEN System,“ Intl Symp Artificial
Int Robotics & Automation in Space, Noordwijk, The Netherlands, June 1999.

13.S. Chien, B. Cichy, S . Schaffer, D. Tran, G. Rabideau, R. Bote, Dan Mandl, S.
Frye, S . Shulman, J. Van Gaasbeck, D. Boyer, Validating the EO-1 Autonomous
Science Agent, Working notes of the Workshop on Safe Agents, AAMAS-2003.

14.S. Chien, et al., “The Techsat-21 Autonomous Space Science Agent,”
International Conference on Autonomous Agents and Multi-agent Systems
(AAMAS 2002). Bologna, Italy. July 2002

Acknowledgement

Portions of this work were performed at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration. We would like to acknowledge the important contributions of
Nghia Tang and Michael Burl of JPL, Dan Mandl, Stuart Frye, Seth Shulman, and
Stephen Ungar of GSFC, Jerry Hengemihle and Bruce Trout of Microtel LLC, Jeff
D’Agostino of the Hammers Corp., Robert Bote of Honeywell Corp., Jim Van
Gaasbeck and Darrell Boyer of ICs, Michael Griffin and Hsiao-hua Burke of MIT
Lincoln Labs, Ronald Greeley, Thomas Doggett, and Kevin Williams of ASU, and
Victor Baker and James Dohm of University of Arizona.

13

